skip to main content


Search for: All records

Creators/Authors contains: "Choi, Jeewon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes a methodology to increase the lifetime of the central battery energy storage system (CBESS) in an islanded building-level DC microgrid (MG) and enhance the voltage quality of the system by employing the supercapacitor (SC) of electric vehicles (EVs) that utilize battery-SC hybrid energy storage systems. To this end, an adaptive filtration-based (FB) current-sharing strategy is proposed in the voltage feedback control loop of the MG that smooths the CBESS current to increase its lifetime by allocating a portion of the high-frequency current variations to the EV charger. The bandwidth of this filter is adjusted using a data-driven algorithm to guarantee that only the EV's SC absorbs the high-frequency current variations, thereby enabling the EV's battery energy storage system (BESS) to follow its standard constant current-constant voltage (CC-CV) charging profile. Therefore, the EV's SC can coordinate with the CBESS without impacting the charging profile of the EV's BESS. Also, a small-signal stability analysis is provided indicating that the proposed approach improves the marginal voltage stability of the DC MG leading to better transient response and higher voltage quality. Finally, the performance of the proposed EV charging is validated using MATLAB/Simulink and hardware-in-the-loop (HIL) testing. 
    more » « less
  2. null (Ed.)
    This paper proposes a finite-time event-triggered secondary frequency and voltage control for islanded AC microgrids (MGs) in a distributed fashion. The proposed control strategy can effectively perform frequency restoration and voltage regulations, while sharing the active and reactive power among the distributed generators (DGs) based on their power ratings. The finite-time control enables a system to reach consensus in a finite period of time enhanced from the asymptotic convergence. The event-triggered communication is utilized to reduce the communication burden among the DG controllers by transmitting data among DGs if an event-triggering condition is satisfied. The performance of the proposed finite-time event-triggered frequency control is verified utilizing a hardware-in-the-loop experimental testbed which simulates an AC MG in Opal-RT. 
    more » « less
  3. Abstract

    This paper addresses the cybersecurity of hierarchical control of AC microgrids with distributed secondary control. The false data injection (FDI) cyberattack is assumed to alter the operating frequency of inverter‐based distributed generators (DGs) in an islanded microgrid. For the microgrids consisting of the grid‐forming inverters with the secondary control operating in a distributed manner, the attack on one DG deteriorates not only the corresponding DG but also the other DGs that receive the corrupted information via the distributed communication network. To this end, an FDI attack detection algorithm based on a combination of Gaussian process regression and one‐class support vector machine (OC‐SVM) anomaly detection is introduced. This algorithm is unsupervised in the sense that it does not require labelled abnormal data for training which is difficult to collect. The Gaussian process model predicts the response of the DG, and its prediction error and estimated variances provide input to an OC‐SVM anomaly detector. This algorithm returns enhanced detection performance than the standalone OC‐SVM. The proposed cyberattack detector is trained and tested with the data collected from a 4 DG microgrid test model and is validated in both simulation and hardware‐in‐the‐loop testbeds.

     
    more » « less
  4. null (Ed.)
    In this paper, we introduce a distributed secondary voltage and frequency control scheme for an islanded ac microgrid under event-triggered communication. An integral type event-triggered mechanism is proposed by which each distributed generator (DG) periodically checks its triggering condition and determines whether to update its control inputs and broadcast its states to neighboring DGs. In contrast to existing event-triggered strategies on secondary control of microgrids, the proposed event-triggered mechanism is able to handle the consensus problem in case of asynchronous communication. Under the proposed sampled-data based event-triggered mechanism, DGs do not need to be synchronized to a common clock and each individual DG checks its triggering condition periodically, relying on its own clock. Furthermore, the proposed method efficiently reduces communication rate. We provide sufficient conditions under which microgrid's frequency and a critical bus voltage asymptotically converge to the nominal frequency and voltage, respectively. Finally, effectiveness of our proposed method is verified by testing different scenarios on an islanded ac microgrid benchmark in the MATLAB/Simulink environment as well as a hardware-in-the-loop (HIL) platform, where the physical system is modeled in the Opal-RT and the cyber system is realized in Raspberry Pis. 
    more » « less